For a list of all papers click here

Wednesday, 4 November 2015

Improving MAV Control by Predicting Aerodynamic Effects of Obstacles


Building on our previous work, we demonstrate how it is possible to improve flight control of a MAV that experiences aerodynamic disturbances caused by objects on its path. Predictions based on low resolution depth images taken at a distance are incorporated into the flight control loop on the throttle channel as this is adjusted to target undisrupted level flight. We demonstrate that a statistically significant improvement (p << 0:001) is possible for some common obstacles such as boxes and steps, compared to using conventional feedback-only control. Our approach and results are encouraging toward more autonomous MAV exploration strategies.